R

b T R

and (14)) are valid. Once T(8) .and ¢(8) are solved for, equation (23)
relates the kite angle 6 to the section lift/drag ratio, £/d, in the form

dé & sin ¢

ds d T (25)

Note that for 2/d ~ 0(l), substantial kiting is possible, as wouid be

, expecced from physical reasoning. At the same time, 2/d ~ 0(1) implies

very small angles of attack, viz.:

. .
2 _d .02
* "4 fac, - () 755 - -003psp1ans (26)
da
a=20

In general a(s) must be solved from the twist moment equation (21).
Under those circumstances when a(s) is a constant (these will be determined
later) so is &/d and equation (25) is easily integrated. Solutions for ¢,

T, and 6, corresponding to four selected drag lcading functions, are sum-
marized in Table 2. For simplicity, the boundary conditions at the body
have been selected to be ¢(o) = 90 degrees (body drag/lift ratio is zero)
and 6(0) = 0 (buody exerts no lateral force). The towing catenaries cor-
responding to the case a = o are shown in Figure 4. The kite angle is
shown as a function of scope in Figure 5.

This angle is weakly dependent on the particular form of loading
function. Also, for reasonable scopes, the variation in kite from the
extreme case of a vertical trail is small. For a scope %ﬂ = 1.0, the

o
lateral displacement as a function of cable lift-to-drag ratio is
shown in Figure 6. The depth loss due to kiting is shown in Figure 7.
This is normally less than 10 percent, even at kite angles up to 45 degrees.
In summary, the effect of a small constant angle of attack is a substantial
lateral body displacement, large kite angles in the upper part of the towline,
and a small loss in depth. No change in trail occurs if the increase in drag
due to angle of attack is neglected.

EFFECT OF CAMBER

Fairings are usually designed as symmetric hydrofoils sectiomns. The
presence of asymmetry (or camber) in the fairing cross section shape due,
for example, to manufacturing limitations or deformation under use is
recognized as a cause of kiting. If torsional and flexural stiffness

effects on the towline twist are neglected, a simple physical interpretation

of the mechanism of camber induced kiting and formulas for predicting ‘the
kiting can be derived.

10
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Figure 4 - Nondimensional Catenaries for Four Loading Functions
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Consider the twist moments and kiting forces on a section of a
cambered towline initially at zero angle of attack. The fairing will
"rotate until an equilibrium of moments is reached at some angle a,, such
that mg(a,) = O. (The moment in this case is referred to the effective
center of tension.) In general, however, the kiting force fy(ae) 1is not
zers. Thus, the towline will displace laterally until the tension force
(TKk) balances fi(ag) (equation (23)). This is shown schematically in
Figure 8, where, for eimplicity the 1i1ft due to camber %., and angle
of attack %4, are shown a. separate, additive effects. '

For moment equilibrium,

2 (Ey = Ep) = Lo (6 - Ep) = O

or \ 27
£c = b1 ‘
la = Ec E;———Eqr

where £,, &, and Lq are the chordwise positions of the hfdrodynamic and
tension forces measured from the leading edge. The hydrodynamic kiting
force, fi, is

fk = Rc - La
(28) :
o ( ] :T_) b 4
c ;Q - ET :1¢§
In terms of the camber 1ift coefficient C, defined as
¢ = Ye/olyvie | (29) |
c I “~
the lift-to-drag ratio may be written as
Ee b7
2/d = £, /d = C./Cy ( = zx—_—_—z-T—) ‘ (30)
and the angle of attack a
C E =& 3
o = c . _9_..____T— 5 (31)
e. dC Elt - ET
¢ Ja =0
|
|
16
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In the linear approximation, C. 1s proportional to the cemher/chord ratio,
c ' ;

o

— , Thus, for a prescribed cambet distribution and drag coefticient,

C
L, (Ee) (1 Se” bt 5T> |
d°\c £, - by | ., Ba

This ‘ationship is graphically presented in Figure 9 for a parabolic
camber profile. Extermely small camber ratios, constant along the span,
result in sufficient angles of attack and corresponding lift/drag ratios

to cause significant kiting. The sensitivity to position of center of
tension and center of pressure also is apparent. The center of pressure is
primarily a function of the shape and construction of the fairing. The

center of tension is located by the choice of shape, material and construction:

of the cable strength member.

It should be noted that a apanvise sinusiodal distribution of
camber, with sufficiently small wavelength, will substantially reduce
the degree of kiting. For example, a vartical cable (¢ = 90°) of length
L with angle of attack 2 = a5 sin nm S/L (n = integer) has a lateral dis-
placement Z(o), due to kiting of-

2
dc p/,V°CL
Z(O) =(______g_ . -L__ " i). (33)
L \ da T nm

a =0 e

EFFECT OF FLEXUKAL RIGIDITY

In an integrated towline, the strength member 1is usually shaped

'such that bending in the towing catenary introduces destabilizing tor-

sional moments. This is a consequence of the fairing streamlined shape
and the desire to fill as much of the area as possible with tension
carrying fibers. It is of interest to determine under what circumstances
the towline is subject to torsional buckling instability. That is, the tow-
line, if subjected to small disturbances, will assume divergent angles of
attack and subsequent kiting.

I1f torsional rigidity effects are neglected (GJ = 0), the twist
equation with s chosen as the elastic axis reduces to

MKy - MK+ mg > 05 >0 (34)

Since each cable section now acts independently in twist, the requirement
for stability is a positive net moment for positive a (a restoring moment).
Substituting the M components from Equation (17) and combining terms gives

£ P 2T Ty - n?\luz u2 R 77 A >

LR e

el e sialad é Ll S,

[ »]

= — e £2385)
I\QT Qs} U\k U‘\nl AN 2 ETy7 \unn o 11( nnnk, + !S pa {323

This can be written, using equations (19) and (20) as
2
T(E YK Z Q) @, - T D) &y k], 0
(Ep = EQK, E a T, = EIDK Do -« . - £ m > (36)
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3
‘i ,
¥ "3 In the stability analysis, we are concerned with cases of f /f < 1 and
& " since a << fk/fn, equation (36) simplifies to : k' 'n
w ! 7 ‘ ‘
: j ; f1o _ _ 2 fk .
; '1‘(6.r - Es) Ko "T+ (EI, - EI (K, )(— -f—)+ m, > 0 (37)
| n n ‘
g - _a
: ' EI, - EI m ;
N 2 1 3
' - - +——+—>0C
(8p = &) o=y > (38)
’ 1
where R is the local radius of curvature in the ¢ plane O-TF).
Using equations (14) and (15), this may be written as n
{ ﬁ - 'é_i' .
| 2 1 m(a)
i -(ET - ES) + TR + ) >0 ‘ (39)
i
1 If the approximation
|‘ m(a) =L () © (- es) b (40)
‘ , i :
f is used, where £, is the chordwise position of the center of 1lift, then
the requirement for twist stability becomes
s Sl
g Since the structural destabiliiing moment and the hydrodynamic restoring
ol moment are both nearly linearly dependent on lift coefficient, it does not
: appear in equation (41). The speed of tow enters only implicity in deter-
; mining the tenmsion and radius of curvature. It may be concluded from
| equation (41) that flexural stiffness acts to reduce the effective
o hydrodynamic restoring moment arm (£, - £r). As an exawple of application
() of equation (41), consider the integrated towline developed by the

-

Boeing Company in conjunction with the Naval Undersea Center. The
characteristics are:

-

l} El, = 25,420 1b in’
b, i - 2
?f EI, 17,340 1b in
% T = 10,000 1b |
5{ 40 knots tow speed
£ R = 930 ft
"4
'4

E 9Ca1kins, D.E., "Hydrofoil High-Speed Towed System: Trial Evaluation, Part

2

¥ III," NUC TP 241 (Aug 1972).
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= & - = 2 2
ek ‘d‘:} + (BT, - EL)) (aKy" - o ” - KK + T(Ep = £g) (Ky = akp)

where & = s/L.
2/d ~ 0(1) and retaining terms of order a and 62 gives

B = & = 0,269 inch

Inserting these values into equation (41) yields,

£, - Ep 2 0.0000724 inch

which 1s obviously satisfied.

EFFECT OF TORSIONAL RIGIDITY

The effect of torsional rigidity, Ej, can be determined by solving

the complete twist equation (21). Substituting the M components from
equation (17) and mg from equation (15) ylelds

2 (42)
+m(a) sin® ¢ = 0

Closed sform solutions to equation (42) for general functions T(s) and ¢(s8)

are not possible.
assuming that the basic trail catenary
of curvature large compared to total scope, L.
sidered a small parameter, then the following approximations ar

A simpler but useful problem can be formulated by

is nearly vertical and with a radius
Thus if dL/T, = § is con-

e valid:

/Ty = 1+ 0(5%)

d¢ 2
L*°K == ==8+ 0(5§%)
n ds (43)

L * K = =8(2/d) + 0(52)
Lo o= 523—:-+ 0(8”)

Inserting these expressions into equation (42) regarding

K
&
Cfr? (e -8y |
da - da 2 L(a) o) T s’ + ffz - Efl 2 2(a)
da - €3 4 5o +H— 8

é ds ds d d d (44)
. GJ

ti +m) LZ=0
,3 : &

é If the approximation of equation (40) 1is used for m(a) and equation (12)
é for 2(a), then in terms of the variable LI

i dc,

A ‘ da

% sk=4g 6V ' "a= 0 (45)
4 d '

E

i
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one obtains, after some manipulation,

2
do 4+ +Qa=0 (46)
ds*” =

where the constant Q is given by
— - —_ 2 -
EI; - EIp + CT - :‘;L By = Ep
Q= 47)
[e4]

The general solution of equation (46) may be written as
“Lgk?
a(st; Q) = e 18 {Cl i -%, 5, % s*?)
Q3 v
+Cystm (1= 3k 's*z)} (48)

wher2 m(a,b,x,) is the confluent hypergeometric function. If the fairing is
free swivelling at its terminations, [t{0) = T(L) = 0] then nontrivial

‘solutions are possible only if

3 1 *2 o
—%"—2‘;? SL )'0 (49)

lw

m ¢

N

where sf = s* at s = L. The smallest value of sf for which equation (49) is
satisfied may be found by using Abramowitz 0 formula for Xo, the first positive
zero of m (a,b,x),

2 L,b,?
w2 G +3)

¥ ® T2 - 4a
ﬁ Applying this to Equation (49) yields the stability requirement
2

1 .2 m

— gk W AS— :
! 2 ¢ 3% 2Q : .(30)
} ;
z or, equivalently,
K — — ) B
1 TTZ_G_J- EIl - EIZ‘— ?CJ
/ Samfr2 Ty 2 T T R L)
{; {——\ L o O

*
&
S
3

o5/

where Ro = To/d is the radius of curvature.

10
Abramowitz, M. a2nd I. Stegun, '"Handbook of Mathematical Functions,"

Chapter 13, U.S. Government Printing Office, Washington, D.C., 1965
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1f the cable i8 free swivelling at s = L (t (L) = 0), but built in at
s =0 (8 & = 0) gmgs then in a similar manner one obtains the relation of

equation (51)"except for a factor of J/4 on the first term of the right-hand

side. These results may be compared to the extreme case of a vertical cable
(dL/To + 0) for which the twist equation reduces to

df
d2 .(*&;;'Zo ('Ea ET)
" L Aa= O; A = —
ds GJ

(52)

If A>0, stable solutions are assured. If A<0, then the general solution 1s

a = C; sin /=X s + C2 cos V=) s (53)

and for which stability is assured if

2
- A< b Eﬁ =0 at's =0, L

2 ds

L
' (54)
2
1 q da

—A<70-‘I7-‘d—8--0 s = L

a=0 s=0
dL
These are equivalent to the solution given by equation (51) for-;; + 0. Thus,

the effect of GJ is seen to be stabilizing in two ways. First, there is an end
effect (usually very small for realistic fairing lengths) dependent on the type
of end fixity. Second, there is a stabilizing term associated with the curva-

ture in the same manner as the flexural rigidities.
It is interesting to note that in the case of a straight line catenary, if

A>0, the solution with a(0) = ag and da/ds = 0 at S =L is

cosh VA (L-8)
cosh /A L

a = , :
and as YA L » *» oot e Vﬁ_s. Thus, the effect of towed body torque (or,
o

P

for that matter, a torsional disturbance anywhere along the fairing) exponen-
tially decays from the point of application.
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CONCLUSIONS

A theory for the hydrodynamic and structural mechanisms leading to faired
towline kiting is presented. Stability criteria and relationships for pre-
dicting towing performance are developed in terms of the fairing section geo-
metric properties, structural characteristics, and hydrodynamic coefficients.
Specifically, it 1s found that: : ‘

1) A small angle of attack, constant along the faired towline is
sufficient to cause catastrophic kiting. For a 1lift/drag ratio of unity
(o ® 0.15 degree), kite angles up to 60 degrees can result (Figure 5), with
a corresponding depth loss of 10 to 15 percent (Figure 7) and body lateral
displacement of 40 percent of scope (Figure 6). _

2) Remarkably small fairing secticn asymmetries (0.1 percent of chord),
1f constant spanwise, result in sufficient angle of attack for severe kiting.
The degree of this camber induced kiting is critically dependent on the
chordwise locations of hydrodynamic and tension loading.

3) Flexural rigidity, in combination with the towing catenary curva-
ture can result in a destabillzing twist moment. A criteria for the required
hydrodynamic moment arm to overcome this effect is given in equation (41).

4) Torsional rigidity acts to stabilize the fairing in twist, depending
on end constraints and catenary curvature as shown in equation (51).

The foregoing analysis will provide criteria for designing improved
faired towline strength members and fairings while minimizing the risk
of kiting. The theory also provides a general framework which could be
extended to investigate, for example, dynamic stability.
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